
Serpentine StarCraft II Agent - Danger Noodle

Team Serpentine, M.R.M. Beurskens, W.J.G.M. van den Bemd

June 2019

1 Abstract

In June of 2019 team Serpentine submitted a StarCraft II minigame agent to
the FruitPunch AI Competition, which was the debut competition of our team.
In this competition we designed and implemented a machine learning based
agent that was able to play a variation on a StarCraft II game. We managed to
end in first place using a reinforcement learning setup with a neural network,
implementing Q-learning and an epsilon greedy training policy. We managed to
create coherent behaviour that allowed us to win. However scripted tactics still
appeared superior and the approach did not generalize well against stationary
opponents. A more structured implementation approach, modular enough to
test different parts of the algorithm automatically and to debug much more
efficiently, is required to solve problems like this in the future. Going forward
we believe that separating concerns during implementation for these kinds of
algorithms is essential in order for them to be usable.

2 Introduction

In June of 2019 team Serpentine submitted a StarCraft II minigame agent to the
FruitPunch AI Competition, which was the debut competition of our team. In
this competition we designed and implemented a machine learning based agent
that was able to play a variation on a StarCraft II game [14]. StarCraft II is a real
time strategy game where economy management and unit control play a central
role. This challenge focused on the unit management side and abstracted away
the economic problem. The challenge thus became much simpler, and we were
able to design, implement and train an agent in six weeks time. We competed
against four other teams and ended up in first place.

This document is structured as follows. In the related works we will pro-
vide overview of other machine learning based agents and suitable game based
artificial intelligence environments. The section on the challenge environment
provides a description of the StarCraft II minigame we used to compete and
corresponding specifications. Following this we introduce the design and imple-
mentation of the code and conclude with our takeaways and future intentions.

1



3 Related Work

Video games are a popular platform to test and train artificial intelligence al-
gorithms [12] [3] [16]. StarCraft II is an example of such a game in which the
problem is mostly framed as a sparse reward problem with partial state knowl-
edge [14]. Game developer Blizzard released an API in order to easily interface
with the game using Python and supports research using their platform. Using
the level editor it is possible to make custom games as well. DeepMind used
this editor to benchmark several agents playing subsets of the real game [5].
The full game has been played by agents to some extent by Tencent [10] and
DeepMinds’ AlphaStar [13].

Other gaming platforms that are extensively used for AI research include
OpenAI Gym [4] [11] for ATARI games and ViZDoom [7] [15] for visual based
reinforcement learning in Doom. We used the DeepMind papers on Deep Q-
learning Networks for ATARI games [8] [9] as an inspiration for our StarCraft
II agent. Some recent work in Quake 3 Arena [6] highlights algorithms geared
towards multiple players as well. Finally, Google recently published an open
source platform to evaluate reinforcement learning algorithms in particular using
a soccer game environment [1].

4 Challenge Environment

The competition presented a modified version of the game StarCraft II as a
platform for teams to compete. The challenge consists of two opposing players
controlling five identical units each as seen in Figure 1. The goal of the game is
to get a score of 200, or alternatively secure the highest score after 4 minutes.
Points are awarded for capturing a flag in the middle of the screen or for defeat-
ing enemy units, rewarding 10 points and 5 points respectively. Units spawn
after they are defeated as soon as their individual cool down timers expire.
Figure 2 shows an overview of the map used in the competition.

Units can be moved individually or in groups, are able to attack normally
and are able to use a ranged attack once every 2 seconds which cover an area
of attack. The game is controlled through the PySC2 API [2] using interactions
such as ”select all units”, ”move camera” and ”activate special attack”. Inter-
actions in this framework are limited to 2 interaction per second for artificial
agents. As a consequence it does not seem viable to micromanage individual
units, as performing actions could take anywhere between 1 to several seconds.
Such a time window is slow relative to the pace of the game. Through experi-
mentation we extracted more details about the environment which are listed in
Appendix A.

5 Software Architecture

The serpentine Starcraft II bot has a hierarchical structure based on hand built
policies which correspond to actions an agent is able to perform. A deep neu-

2



Figure 1: Units on the map from the two opposing teams. One team is colored
red and the other team is colored blue.

Figure 2: Overview of the competition map. Two spawn points at the top and
bottom of the map, ”BlueSpawn” and ”RedSpawn” respectively, produce units
when they are defeated. The capture point ”AddArea” in the middle contains
the flag.

3



Figure 3: Architecture of the neural network used to model agent behaviour.
The network consists of fully connected layers. Input comes from the unit
tracker using multiple time steps to capture temporal information. Output is
the policy the agent should execute. In this case a subset (11) of the total
number available (21).

ral network is used to map observations to policies. The agent trains against
scripted agents and is rewarded for increasing it’s own score. By iterating train-
ing cycles, the network maps inputs to outputs while maximizing the score.

5.1 The Network

The network is built up of several fully connected layers as represented in Figure
3. It takes input from a pre-processing system called the unit tracker, and out-
puts expected rewards for the policies that the agent can perform. In essence the
network is trying to learn the mapping from observation to a policies expected
reward as accurately as possible, and we simply instruct it to always choose
the best option available to it. We always try to perform the policy with the
highest expected reward, however when this is not possible we simply default
to another policy until the agent finds one that does work.

Because the network models the game, it is possible for it to learn without
actually winning in each training session. The more accurate the model, the
better we expect our performance to be.

The input to the network does not only include the output of the unit tracker
for the current time step but also for a number of previous time steps. This way
we try to encode temporal information into the network.

4



5.2 Pre-Processing

The pre-processing unit is called the unit tracker. It reads the PySC2 API and
constructs a number of useful metrics for the game including but not limited to:
Friendly and enemy unit coordinates, death flags, spawn timers and pineapple
spawn timers. It is a compact representation of the information that can be
gained from the API. This pre-processing step allows us to have smaller net-
works, and we are able to do away with any convolutional layers that might be
necessary when processing inputs as image data.

5.3 Policies

Policies are low level actions that agents can perform. They often correspond to
API action calls to the Starcraft interface with hard coded parameters. They can
also be a simple combination of action calls. Examples include ”Move camera to
pineapple”, ”Attack nearest enemy” and ”Walk to left flank”. The total number
of policies is 21, but we do not always include all policies during training. The
neural network outputs a predicted reward for each of these policies, and we
choose the one that is expected to yield the highest score.

However, the StarCraft environment does not allow for certain actions to be
performed at certain points in the game. Instead of changing the architecture
of the network at each time step to accommodate availability of actions, the
output is filtered. If the chosen policy cannot be executed the net most likely
one is passed to the filter until an available policy is found until finally a ”No-
Op” policy is executed, which does nothing but is always available. This allows
the networks structure to be static throughout simulation and training.

6 Implementation and Training

The network used for this agent should model the expected reward as close as
possible to the actual reward gained. Therefore it should have explored a large
amount of states, for which it should all learn to predict the expected reward
accurately.

To ensure that the agent does not fall into repetitive behaviour in a small
subset of the total states the epsilon greedy algorithm is used. This forces
the agent to select random actions during training. Only random actions are
selected at first, but as the training continues, the percentage of forced random
actions is also reduced. This allows the agent to explore the state space similar
to its normal behaviour, thus making it better at generalizing at new situations.

The input to the network is an array storing the output of the unit tracker
over 4 previous time steps. The output is equal to the amount of policies
available to us at the game. If a policy is unavailable, we choose the next best
policy until once can be executed.

Training was done by running approximately 6000 games before the per-
formance capped. We trained the network alternating between mirrors of the
network and a scripted agent set to immediately capture the flag with 5 units.

5



7 Results

Our agent played in the tournament against three other teams. Two of those
teams had agents that did nothing at all. Against these agents we appeared
to also score nothing. Our agent has not generalized well against stationary
opponents, which is to be expected as these kinds of opponents were not included
in the training set. Even when training against ourselves, at least part of the
move set is executed stochastically because of our implementation of the epsilon
greedy policy.

Against the last opponent we did manage to win. This opponent moved
rather stochastically against which our agent was equipped by at least moving to
the center of the stage to capture the flag and attacking opponents. However, we
were never able to beat our own scripted agent, indicating that the performance
of our agent was lacking despite winning the competition.

8 Conclusion

One of the core problems this competition has been the huge problem space
and lack of modularity in our implementation. This made testing small pieces
of code impossible, and hindered troubleshooting. A more structured approach
to testing the implementation of neural networks is necessary. These black box
models are tough to understand, so every logistic piece of code that can be
untangled and tested separately will provide an advantage in troubleshooting
and improve understanding. We believe that separating concerns during im-
plementation for these kinds of algorithms is essential in order for them to be
usable.

Implementing AI algorithms is not a trivial exercise. It requires both under-
standing of theory and experience in implementation. Other approaches should
be considered seriously in the future as well. The problem space of the com-
petition was not sufficiently complex to void other more easily understandable
approaches to the problem. We would like to conclude that the simplest ap-
proach to solving the problem, while still addressing the core requirements of
the solution, is probably the best one. Therefore it is safe to say that this com-
petition broadened both our understanding and our definition of AI. We will
keep exploring more algorithms and approaches, both simple and complex, as
our expertise and understanding grows. we hope to steadily increase the perfor-
mance of our systems going forward and challenge ourselves again with larger
competitions in the future.

6



References

[1] Introducing a new framework for flexible and reproducible rein-
forcement learning research. https://ai.googleblog.com/2018/08/

introducing-new-framework-for-flexible.html. Accessed: 2019-06-
25.

[2] Pysc2 - starcraft ii learning environment. https://github.com/deepmind/
pysc2. Accessed: 2019-06-25.

[3] Christopher Amato and Guy Shani. High-level reinforcement learning in
strategy games. In Proceedings of the 9th International Conference on Au-
tonomous Agents and Multiagent Systems: Volume 1 - Volume 1, AAMAS
’10, pages 75–82, Richland, SC, 2010. International Foundation for Au-
tonomous Agents and Multiagent Systems.

[4] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. CoRR,
abs/1606.01540, 2016.

[5] Deepmind. Starcraft ii agents. http://starcraftgym.com/.

[6] Max Jaderberg, Wojciech M. Czarnecki, Iain Dunning, Luke Marris, Guy
Lever, Antonio Garćıa Castañeda, Charles Beattie, Neil C. Rabinowitz,
Ari S. Morcos, Avraham Ruderman, Nicolas Sonnerat, Tim Green, Louise
Deason, Joel Z. Leibo, David Silver, Demis Hassabis, Koray Kavukcuoglu,
and Thore Graepel. Human-level performance in first-person multi-
player games with population-based deep reinforcement learning. CoRR,
abs/1807.01281, 2018.

[7] Michal Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and
Wojciech Jaskowski. Vizdoom: A doom-based AI research platform for
visual reinforcement learning. CoRR, abs/1605.02097, 2016.

[8] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin A. Riedmiller. Playing atari with
deep reinforcement learning. CoRR, abs/1312.5602, 2013.

[9] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel
Veness, Marc G. Bellemare, Alex Graves, Martin A. Riedmiller, Andreas
Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik,
Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,
Shane Legg, and Demis Hassabis. Human-level control through deep rein-
forcement learning. Nature, 518:529–533, 2015.

[10] Peng Sun, Xinghai Sun, Lei Han, Jiechao Xiong, Qing Wang, Bo Li, Yang
Zheng, Ji Liu, Yongsheng Liu, Han Liu, and Tong Zhang. Tstarbots: De-
feating the cheating level builtin AI in starcraft II in the full game. CoRR,
abs/1809.07193, 2018.

7

https://ai.googleblog.com/2018/08/introducing-new-framework-for-flexible.html
https://ai.googleblog.com/2018/08/introducing-new-framework-for-flexible.html
https://github.com/deepmind/pysc2
https://github.com/deepmind/pysc2
http://starcraftgym.com/


[11] Ruben Rodriguez Torrado, Philip Bontrager, Julian Togelius, Jialin Liu,
and Diego Pérez-Liébana. Deep reinforcement learning for general video
game AI. CoRR, abs/1806.02448, 2018.

[12] Aaron Tucker, Adam Gleave, and Stuart Russell. Inverse reinforcement
learning for video games. CoRR, abs/1810.10593, 2018.

[13] Oriol Vinyals, Igor Babuschkin, Junyoung Chung, Michael Mathieu, Max
Jaderberg, Wojciech M. Czarnecki, Andrew Dudzik, Aja Huang, Petko
Georgiev, Richard Powell, Timo Ewalds, Dan Horgan, Manuel Kroiss, Ivo
Danihelka, John Agapiou, Junhyuk Oh, Valentin Dalibard, David Choi,
Laurent Sifre, Yury Sulsky, Sasha Vezhnevets, James Molloy, Trevor Cai,
David Budden, Tom Paine, Caglar Gulcehre, Ziyu Wang, Tobias Pfaff,
Toby Pohlen, Yuhuai Wu, Dani Yogatama, Julia Cohen, Katrina McK-
inney, Oliver Smith, Tom Schaul, Timothy Lillicrap, Chris Apps, Koray
Kavukcuoglu, Demis Hassabis, and David Silver. AlphaStar: Mastering the
Real-Time Strategy Game StarCraft II. https://deepmind.com/blog/

alphastar-mastering-real-time-strategy-game-starcraft-ii/,
2019.

[14] Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexan-
der Sasha Vezhnevets, Michelle Yeo, Alireza Makhzani, Heinrich Küttler,
John Agapiou, Julian Schrittwieser, John Quan, Stephen Gaffney, Stig Pe-
tersen, Karen Simonyan, Tom Schaul, Hado van Hasselt, David Silver, Tim-
othy P. Lillicrap, Kevin Calderone, Paul Keet, Anthony Brunasso, David
Lawrence, Anders Ekermo, Jacob Repp, and Rodney Tsing. Starcraft II:
A new challenge for reinforcement learning. CoRR, abs/1708.04782, 2017.

[15] Marek Wydmuch, Michal Kempka, and Wojciech Jaskowski. Vizdoom com-
petitions: Playing doom from pixels. CoRR, abs/1809.03470, 2018.

[16] Georgios N. Yannakakis and Julian Togelius. Artificial Intelligence and
Games. Springer Publishing Company, Incorporated, 1st edition, 2018.

8

https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/


Appendices

A Challenge Environment Details

Through experimentation we extracted the details of the challenge environment.
Time related values are always relative to the game speed, as it is possible to
accelerate matches according to hardware capacity. The values listed in Table
1 are relative to the game played at the speed of a regular StarCraft II match.

Units have a shield and hit points. The shield is always damaged first until
gone. Only afterwards will hit points be affected. A unit is defeated when hit
points reach zero. Shield can regenerate after some time has passed between
taking damage.

Some additional facts about the map:

• Turning does not affect movement speed of units.

• Units can start performing actions the AI tick after executing their previ-
ous action.

• The ranged attack can also damage friendly units.

9



Table 1: Overview of measured game constants

Map Measurements
Distance between spawn and flag: 30 meters
Total map size: 80x80 meters
Playing field: Approx. 70x23 (non rectangular)
Minimal distance between units: 1.25 meters

Ranged Attack Measurements
Explosion distance: 8 meters
Total damage per unit: 60 damage (does not stack)
Tick damage: 20 damage/AI tick
Explosion radius: 2.13 meters
Explosion duration: 1.5 seconds (3 AI ticks)
Explosion cool down: 2.0 seconds (4 AI ticks)

Timing Measurements
AI action rate 2/second

Flag measurements
Flag points: 10 points
Flag spawn timer: 10.1 seconds

If units are in flag area when flag is spawned, a force field pushes them away
Flag spawn force field duration: 0.1 seconds
Flag spawn pushing distance: 3.3 meters
Flag force field trigger radius: 3.5 meters

Unit Measurements
Points gained on defeat: 5 points
Unit spawn timer: 12 seconds
Auto attack range: 4.1 meters
Auto attack damage: 14 damage
Auto attack speed: 1 per 2 seconds
Movement speed: 2.95 meters/second
Shield regeneration starts after: 10 seconds of no damage
Shield regeneration rate: 2 shield points per second
Hit points / Shield: 80/80

10


	Abstract
	Introduction
	Related Work
	Challenge Environment
	Software Architecture
	The Network
	Pre-Processing
	Policies

	Implementation and Training
	Results
	Conclusion
	Appendices
	Challenge Environment Details

