
Serpentine StarCraft II Agent - Danger Noodle

Team Serpentine, M.R.M. Beurskens, W.J.G.M. van den Bemd

June 2019

1 Abstract

In June of 2019 team Serpentine submitted a StarCraft II minigame agent to
the FruitPunch AI Competition, which was the debut competition of our team.
In this competition we designed and implemented a machine learning based
agent that was able to play a variation on a StarCraft II game. We managed to
end in first place using a reinforcement learning setup with a neural network,
implementing Q-learning and an epsilon greedy training policy. We managed to
create coherent behaviour that allowed us to win. However scripted tactics still
appeared superior and the approach did not generalize well against stationary
opponents. A more structured implementation approach, modular enough to
test different parts of the algorithm automatically and to debug much more
efficiently, is required to solve problems like this in the future. Going forward
we believe that separating concerns during implementation for these kinds of
algorithms is essential in order for them to be usable.

2 Introduction

In June of 2019 team Serpentine submitted a StarCraft II minigame agent to the
FruitPunch AI Competition, which was the debut competition of our team. In
this competition we designed and implemented a machine learning based agent
that was able to play a variation on a StarCraft II game [14]. StarCraft II is a real
time strategy game where economy management and unit control play a central
role. This challenge focused on the unit management side and abstracted away
the economic problem. The challenge thus became much simpler, and we were
able to design, implement and train an agent in six weeks time. We competed
against four other teams and ended up in first place.

This document is structured as follows. In the related works we will pro-
vide overview of other machine learning based agents and suitable game based
artificial intelligence environments. The section on the challenge environment
provides a description of the StarCraft II minigame we used to compete and
corresponding specifications. Following this we introduce the design and imple-
mentation of the code and conclude with our takeaways and future intentions.

1



3 Related Work

Video games are a popular platform to test and train artificial intelligence al-
gorithms [12] [3] [16]. StarCraft II is an example of such a game in which the
problem is mostly framed as a sparse reward problem with partial state knowl-
edge [14]. Game developer Blizzard released an API in order to easily interface
with the game using Python and supports research using their platform. Using
the level editor it is possible to make custom games as well. DeepMind used
this editor to benchmark several agents playing subsets of the real game [5].
The full game has been played by agents to some extent by Tencent [10] and
DeepMinds’ AlphaStar [13].

Other gaming platforms that are extensively used for AI research include
OpenAI Gym [4] [11] for ATARI games and ViZDoom [7] [15] for visual based
reinforcement learning in Doom. We used the DeepMind papers on Deep Q-
learning Networks for ATARI games [8] [9] as an inspiration for our StarCraft
II agent. Some recent work in Quake 3 Arena [6] highlights algorithms geared
towards multiple players as well. Finally, Google recently published an open
source platform to evaluate reinforcement learning algorithms in particular using
a soccer game environment [1].

4 Challenge Environment

The competition presented a modified version of the game StarCraft II as a
platform for teams to compete. The challenge consists of two opposing players
controlling five identical units each as seen in Figure 1. The goal of the game is
to get a score of 200, or alternatively secure the highest score after 4 minutes.
Points are awarded for capturing a flag in the middle of the screen or for defeat-
ing enemy units, rewarding 10 points and 5 points respectively. Units spawn
after they are defeated as soon as their individual cool down timers expire.
Figure 2 shows an overview of the map used in the competition.

Units can be moved individually or in groups, are able to attack normally
and are able to use a ranged attack once every 2 seconds which cover an area
of attack. The game is controlled through the PySC2 API [2] using interactions
such as ”select all units”, ”move camera” and ”activate special attack”. Inter-
actions in this framework are limited to 2 interaction per second for artificial
agents. As a consequence it does not seem viable to micromanage individual
units, as performing actions could take anywhere between 1 to several seconds.
Such a time window is slow relative to the pace of the game. Through experi-
mentation we extracted more details about the environment which are listed in
Appendix A.

5 Software Architecture

The serpentine Starcraft II bot has a hierarchical structure based on hand built
policies which correspond to actions an agent is able to perform. A deep neu-

2




	Abstract
	Introduction
	Related Work
	Challenge Environment
	Software Architecture
	The Network
	Pre-Processing
	Policies

	Implementation and Training
	Results
	Conclusion
	Appendices
	Challenge Environment Details

